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A Method for Interpolating Scattered Data 
Based Upon a Minimum Norm Network* 

By Gregory M. Nielson 

Abstract. A method for interpolating scattered data is described. CTiven (xi, yi, zi), i 1. N, 
a bivariate function S with continuous first order partial derivatives is defined which has the 
property that S(xi, Yi) zi, i 1,...,N.-The method is based upon a triangulation of the 
domain and a curve network which has certain minimum pseudonorm properties. Algorithms 
and examples are included. 

1. Introduction. In this paper, we present a new method for interpolating scattered 
data. Given the data (xi, Yi, zi), i = 1,...,N, we describe the construction of a 
bivariate function S which has continuous first order partial derivatives and 
S(xi, yi) = zi, i = 1,. . . ,N. The method consists of three separate steps: 

(i) Triangulation. The points Vi = (xi, yi), i = 1,... , N, are used as the vertices of 
a triangulation of a domain D. 

(ii) Curve Network. The approximation S and its first order partial derivatives, SX 
and Sy, are defined on the subset consisting of the union of all edges. 

(iii) Blending. S is extended to D by means of a blending method which will 
assume arbitrary position and slope on the boundary of a triangular domain. 

The basic idea of an interpolant which is defined in a piecewise fashion over 
triangles is not new. Both Lawson [7] and Akima [1] have described such methods. 
Lawson's paper contains a good discussion of many of the aspects of triangulating 
the convex hull of Vi, i = 1,... , N. Both of these methods make use of a discrete C1 
interpolant (i.e., a Cl finite element) for each triangle followed by a local method for 
estimating certain partial derivatives. Even though our method is based upon the 
approach of a curve network followed by the use of a triangular blending (trans- 
finite) interpolant, the particular method we eventually propose can be viewed as an 
assembly of discrete Cl interpolants along with a technique for estimating partial 
derivatives. 

2. The Curve Network. We assume N >- 3 and that the points Vi, i = 1,.. ,N, are 
not collinear. Let Tijk denote the triangle with vertices Vi, Vj and Vk, i 7j k i. 
The list of triple indices which determines the triangulation is denoted by It so that 
D =U ijkc 1Tijk. Let eij represent the line segment with endpoints Vi and Vj, and let 
Ne = {ij: i, j E { a, /B, -y}, a/ly E It} be a list of the indices representing the edges of 
the triangulation. In terms of this notation, the domain of the curve network is 
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E U jEN eij. The derivative normal to an edge eij is given by 

aF - (Yj-Yi) aF (xj-xi) aF 

ani; 11 eij 11 ax 11 ejj 11 ay 
- 

where HI eij HI is the length of eij. The derivative along an edge is given by 

8F (xj -xi) 8F (Yj - YJ 8F 
ae. 11 eli 11 ax 11 ejj 11 ay 

Therefore, 

8F_ -(xj- xi) 8F + Q - YJ 8F 
3x 11 eij 11 aeij 11 eIj 11 anij 

aF - (Yj - YJ aF _(Xj - Xi) aF 

8y 11 eij 11 8ei 11 eij 11 ani 

and so it is clear that if S and aS/anij are known on each edge, the information 
required for step (ii) is available. It is more convenient to specify S and its normal 
derivatives on E since these values can be defined independent of each other at all 
points except the vertices. We will first define S on E, but prior to this, we review 
some material concerning univariate cubic splines which motivates our particular 
choice of the curve network. 

Given the data (ti, si), i = 1,...,n, where tl < t2 . . . < t w the univariate 
natural spline of interpolation can be characterized (cf. de Boor and Lynch [4]) as 
the unique solution to the problem 

Min |n[f,,(t)]2dt, 
(2.1 ) fEH[tl,tn] l 

subject to: f(ti) = si, 

where H[tl, tn] = {f: f E C[tl, tn, f' is absolutely continuous, f" E L2[tl, tn]} 
From this point of view, the mathematical spline is an analogue of the physical 
spline. As a result of this minimization, it can be shown that s is a piecewise cubic 
polynomial which has a continuous second derivative and s"(tl) = s"(tn) = 0. 

Towards the definition of a curve network with an analogous characterization, we 
introduce C[E] = {F: F is the restriction to E of some C1 function defined on D 
and the univariate function obtained as the restriction of F to eij is an element of 

H[eij]}. Analogous to the minimum pseudonorm property of univariate splines, we 
consider the problem of finding an interpolating curve network which minimizes 

(2.2) (TF) = ||a2F| dsij 

where dsi1 represents the element of arc length on the curve consisting of the line 
segment eij. 

We find it convenient to view each F E C [E] as a collection of univariate 
functions 

(2.3) fij(t) = F((1 -t)Vi + tVj), ij Ne,O t 1. 
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With the following parametrization of the curve eij: 

x(t) = (1- t)xi + tx1, y(t) = (I-t)yi + ty1, 

and the fact that 

1 f,= 2 F 
1 ij 11 j e j ' 

we have that 

a(F) iEN 1[F IIet12] [x(t)]2 +[ y(t)]2dt 

ij C N, 1 l 112g()2 

THEOREM 2.1. Let S E C[F] be the unique piecewise cubic network with the 
properties that S(V() = zi, i = 1,...,N, and 

(2.4) 2 
(Xi 

3-X [(xi - x,)Sx(J/) + (y, Yi)SY(Vi) 

ij e Ni Ile ij 113 

+ 
I 

(xi - XJSX(Vj) + 
I 

(Yi - Y,)Sy( Vj) + 23(Z -zj)] = ?, 2 2~J 
2' 

(y - Y)~-(.~y)~(/) (z 
i 

- ( - xi)Sx(vi) + (y. -y)Sy(JVi) 
ij(=Ni Ilei113 

+ (xi - xi)Sx(V') + 
I 

(y, - Y,)Sy(vj) + 3(Zi - zj) = ?' 

where 

Ni { ij: eij is the edge of the triangulation with the endpoint VJ}. 

Then, among allfunctions F F C[E], F(VJ) = zi, i = 1,... ,N, the function S uniquely 
minimizes a(F). 

Proof. We first define the inner product 

(F, G)= " f,(t)g1'(t) dt 
ijN Ile ij Ie3 0o i i 

and note that 

a(F) - a(S) = (F- S, F- S)+ 2(S, F- S). 

For the moment, we assume that (2.4) has a solution and write 

s i(t) = t2(3 - 2t)zj + (1- t)2(2t + l)zi 

?t(I 
- 

t)2[(xj- x_)Sx(Vi) 
+ (y - Yj)Sy(j)] 

+t2(t - )[(x - x)S(VJ) +(y,- yi)Sy(Vj)]. 
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If F is any element of C[ E] which interpolates, then 

| - s:;(t)] dt 

= s -j s]-s [ .. - ]s + ?fsJ(t)[fij(t) - sij(t)] dt 

= o"[ f' - 5' ] 

Since 

s"(1) = 6[zi - zj] + 2[(xj- x)Sx(VJ) + (yj - y)Sy(V)] 

+4[(xj - xS-x(Vj) + (yj -yj)Sy(Vj)], 

s" (O) 6[ zj - zi] 4[(Xj- xi)SX(Vi) +(y1 -yi)Sy(vi)] 

-2 [(xi- xi)SX(VJ) +(yj -yJ)Sy(VJ)], 

we conclude that 

(2.5) 1 1 lS11(t)[f l(t) - S1(t)] dt 

i 1 [6(zi - zj) + 2(xj - xi)(Sx(V) + 2Sx(Vi)) 

+2(yj -yi)(SY(Vj) + 2Sy(Vi))] 

X [(xj 
- xi) [ Fx (Vi) 

- 
SX(JVi) ] + (yj1-y,) [ Fy()Vi -Sy(Vi) 

The change in summation is allowable because s"(1) = sj;(O). This last equation 
points out the fact that (S, F - S) is independent of whether ij or ji is listed in Ne. 
This is the reason we were not definite about this before. Applying (2.4) to (2.5), we 
have that 

(2.6) (S, F-S)= O, 

and so 

a(F) - a(S) = a(F- S) 2 0 

for any curve network F such that F(VJ) = zi. This establishes the minimum 
property assuming that S exists. The existence of S requires a solution of the 2N 
linear equations of (2.4). We will show that this system has a solution by showing 
that the homogeneous system (zi = O, i = 1I... N) has only the trivial solution. 
This argument will also establish the uniqueness of S. Let S be the piecewise cubic 
curve network associated with the solution Sx(VI), SY(Vi), i = 1,... N, of the 
homogeneous system. The same line of reasoning which led to (2.6) can be used to 
conclude that 

(S, S)= 0. 
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That is, we replace both S and F - S with S. Therefore, foJ[iJ(t)]2 dt 0, ij E 

which implies that si is linear. But sij(O) = sij(1) = 0, and so 

(xi - X)SX(Vi) + (Y -y1)Sy(VJ) 0 O, ij E N1, i 1,.. .,N. 

Since each Vi is the vertex of some nondegenerate triangle, this is sufficient to imply 
that Sx(V) = SY(VI) = 0, i = 1,...,N, and so the proof is complete. 

COROLLARY 2.2. If the data (xi, yj, z,), i = 1,... ,N, lie on a plane, then the curve 
network S of Theorem 2.1 will also lie on this plane. 

Proof. Let P represent the plane, and let 

S=PIE 

be the restriction of this plane to the edges. Then S E C[E], S interpolates and 
a(S) = 0. Since the minimum norm network is unique, it must be that case that 
S 

= 
S. 

In order to complete the information required by step (ii), we need to define the 
normal derivative on each edge. We make a particularly simple choice here and take 
the normal derivatives to be linear. That is, 

an ((1- t)Vj + tvj) = (1- t)[(y1 y)SX(J)-(x1-xi)Sy(JK)] 

[ (y1 y, )SX( V )-(xi - xi)Sy( VJ) ij E Ne. 

3. The Blending Method. We now discuss the choice of the triangular blending 
method to be used to extend the curve network to the domain D. For these purposes, 
we let T represent an arbitrary triangle with vertices Vi, i = 1, 2, 3, and bi = bi(x, y), 

i= 1, 2, 3, denote the barycentric coordinates given by 

x = b1x? + b2x2 + b3x3, 

y = blyl + b2y2 + b3y3, 

1 = b, +- b2 + b3. 

Let I {(1, 2,3), (2, 3, 1), (3, 1,2)). 
The first method of approximation to assume predescribed values of a function 

and its first order derivatives on the boundary of a triangle is due to Barnhill, 
Birkhoff and Gordon [3]. This method requires the specification and compatibility 
of the cross partials: 

a 2F a2F 

I] ~ij ik 

While those values are obtainable from the curve network information, in general 
they will not be compatible. 

In fact, 

a2S (v)=sj(0)ckji + aj1 dkj1, (i , ,k)I, 
ae.i3aeik 
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where 

amn (Yi Yn)(Sx(SVm) - S,(Vn)) + (Xm -xn)(Sy(Vn ) - Sy(Vm)), 

(Xl-Xn)(Xm Xn) + (Yl Yn)(Ym Yn) 
CImn -enl 11 1emn 

and 

dimn - (xl- Xn)(Ym -Y) - (Yi Yn)(Xm - xn) 
lmn ||enl 11 11 emn 1 

Therefore a2S(vJ)/aej aeik will involve zj, Sx(Vj) and Sy(Vj), while a2S(vJ)/aejkaej 

will involve Zk, Sx(Vk) and Sy(Vk), and so in general these two partials will not be 
equal. A recently developed method which does not explicitly involve or require the 
compatibility of the cross partials is described in [9]. This method is based upon the 
combination of three interpolants each having certain miminum norm properties. 
When the boundary values given by the curve network are substituted into this 
triangular blending method we obtain the following nine-parameter Cl interpolant 
defined over T. 

(3.1) ST(X, Y) = S(VJ)[b2(3 - 2bi) + 6wbi(bkaij + bjaik)] 
(i,j,k) cl 

+ Sk(Vi) [bbk + wbi(3bkaij + b- bk)] 

+Sj'(Vi)[bjb1 + wbi(3bja,k + bk -b 

where 

SJ( Vi= (Xj - xi)SX(J) ? (y1 - y,)Sy(K), 

blb2b3 

b1b2 + b1b3 + b2b3' 

IIejkII2 + Ieikil - leij 112 
a= ij 211ek 112 

If Sijk is used to represent the same discrete interpolant for the triangle Tijk, then 
the final interpolant can be represented as 

S(x, y) = Sijk(x, y) for (x, y) E ijk 

Concerning the degree of algebraic precision of S, it can be shown that ST will 
reproduce quadratics but the curve network is limited to linear precision and so the 
final interpolation operator has precision of degree one. 

4. Algorithms and Examples. The first step in applying the approximation S 
requires a triangulation of D. In those cases where D is the convex hull of Vi, 
i = 1,... ,N, we have incorporated an algorithm described by Lawson [7] which 
selects a particular triangulation on the basis of the max-min angle criterion. The 
program that implements this algorithm produces information describing the 
boundary along with three arrays n1, n2 and n3, each of length N, which form a list 
of the vertices of each triangle of the triangulation. An example of a triangulation 
produced by this program is given in Table 1 and Figure 1. 
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TABLE 1 
Data Boundary Triangulation 

| i | 1, yes i nl(i) n2(i) n3(i) 
0, no 

1 .21 .88 1 1 7 1 8 
2 .46 .93 1 2 1 7 2 
3 .83 .89 1 3 7 8 10 
4 .97 .54 1 4 7 10 11 
5 .67 .71 0 5 2 7 6 
6 .53 .74 0 6 6 7 11 
7 .28 .77 0 7 10 8 9 
8 .07 .70 1 8 11 10 17 
9 .06 .43 1 9 17 10 9 

10 .25 .56 0 10 11 17 16 
11 .48 .61 0 11 11 16 12 
12 .67 .54 0 12 6 11 5 
13 .77 .45 0 13 2 6 5 
14 .90 .31 0 14 5 11 12 
15 .66 .35 0 15 17 9 18 
16 .50 .47 0 16 17 19 16 
17 .32 .44 0 17 19 17 18 
18 .25 .31 0 18 16 19 15 
19 .46 .33 0 19 12 4 5 
20 .57 .20 0 20 2 5 3 
21 .75 .25 0 21 12 16 15 
22 .94 .05 1 22 12 15 13 
23 .46 .07 0 23 18 9 24 
24 .18 .19 0 24 18 23 19 
25 .14 .06 1 25 23 18 24 

26 4 12 13 
27 15 19 20 
28 15 20 21 
29 13 15 21 
30 24 9 25 
31 19 23 20 
32 23 24 25 
33 13 21 14 
34 3 5 4 
35 20 22 21 
36 22 20 23 
37 4 13 14 
38 23 25 22 
39 14 21 22 
40 4 14 22 

The next step of our method requires the solution of (2.4). The coefficient matrix 
of this linear system is in general quite sparse, but the structure is sufficiently 
complicated to eliminate the use of a direct method which takes advantage of this 
sparseness. We have found that an iterative method based upon the following 
equivalent form of (2.4) works quite well: 

Y. aijSxj + z 
/3 Sy. zxi 

(Sy, pi ( i Yd Y l E jjSXj + 2 -ylj5,j zyi |1.. 
N 

Yi Nj ij CNj 
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CD 2 ,H* *H*..2 

0 00 0 1 2 0 25 0 37 0 50 0 6~~ ~~~~~~~~~2 0 5 087 ,.0 

CD ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ C 

/3 1( ) 

where ~ ~ ~ 2e~H ,x =i~ SxV) yj=S(j 

CD ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ qA 

(yj-yi)2 

2He..H 2yje1 3 , 2 2 .lIj, 

In ~Y 0 226'i EN 

CD~~~~~~~~~~~~' 

Zxi 22 332(z1-z,)(x1-xi) 

and 

CD 3 2 (z6-z,)(Y1-Y) 

ijJN. Hle,;1H3 
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For an initial approximation, we first obtain the first order partial derivatives of 
each plane which interpolates over each triangle. Then for each vertex, we compute 
the average of these derivatives for each triangle that involves this vertex. This 
amounts to the following computation: 

_ _ _fijk c o _ _ _ _ S, Mi I ijkcM Aijk' 1M ijk Ai_k 

where Mi {abc: TabC is a triangle with vertex Vi}, 

| Mi |is the number of elements of Mi, 

fijk (Y; Yk)Zi + (Yk -Y,)Zj + (Yi Yj)Zk, 

gijk (Xk -Xj)Zi + (Xi - Xk)Zj + (xj - xi)zi, and 

Aijk (Xi - 
Xj)(Yi Yk) - (Yi - Y)(Xi - Xk)- 

The first pass of the following algorithm computes the initial values Sx%? Sy9, 
= 1,... ,N, as well as aj, /,B, Yi, Zxi, Zyi, i = 1,...,N, which remain constant 

throughout the iteration process. 

For/= 1,..., N, do: 

For (i, j, k) E I, do: 
a = ni(l), b = nj(l), c nk(l) 

I Ma I = I Ma I +1 

SXa = Sxa + fabc/Aabc 

SYao= SYa + gabc/Aabc 
aa = a, + dab + aac 

f3a = 13a + fiab + f3ac 

Ya Ya + Yab + Yac 

Zxa ZXa + [ ab(Xb Xa)(Zb Za) + Tac(Xc Xa)(Zc Za)] 

ZYa Z +3Tab(Yb Ya)(ZbZ a) + Tac(Yc Ya)(Zc Za)] 

Fori=l,...,N,do: 

Sxo_ SX2 

=a,Y, - 137 
-0 - Yi MYi syi- = -i 

I - ai 
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We have used the notation 

aiab = Tabaab, flab = Tab-fab' Yab TabYab b 

where 

I if Va and Vb are on the boundary, 
Tab = 1/2 otherwise. 

The factor of Tab is necessary because we go sequentially through the list of triangles 
causing each interior edge to be processed twice. 

The iterative part of the algorithm can be described as follows: 

Fori= 1,... N, do: 

L si Zx1i, Ei = Zyi 

For n = 0, l,..., until satisfied, do: 
For / = 1,.. . ,Nt, do: 

For (i, j, k) e I, do: 

a = ni(l), b = nj(l), c = nk(l) 

aa a 4 [IabSX + &acSXn + 
fabSyn +I3acSyc] 

_a =a- 4 [absxb +acSX + YabSYb + iacSYcl] 

Fori= 1,... N, do: 

sx+nIi-lI Si =aI. Si + pi le 

Syin+ 
1 

=-,Si + -yi-lE 

L i Zxi, Ei=zyi 

In Figure 2, we show an example of the results of the above algorithm. The values zi, 
i = 1,. .. I,N, are obtained from the function .25 EXP(-16((x - .5)2 + (y - .5)2)) 

and the triangulation is that of Figure 1. In practice, we have found that, on the 
average, about a dozen iterations will yield five or six digits of accuracy. Although 
they are rare, we have encountered cases that take as many as eighteen and as few as 
one to obtain this same accuracy. 

The final step requires the evaluation of S given by (3.1) on the proper triangle. In 
order to obtain a perspective plot of the surface, we evaluate the approximation on a 
uniform rectangular grid. These values are stored in rectangular array S with 

S(i, j) = S(xi,' fj), i = 1,. . .,NR, j = 1,. .. INC, 

where 

= XL+ (i-1)DX, yj= YL+ (j-1)DY, 

XH-XL YH -YL 

DX= NRXH 1 and DY= NC-iY 

We take the approximation to be zero for those points which lie in the display 
rectangle [XL, XH] X [YL, YH] but outside D. Rather than stepping through the 
values of (xi, y-) and asking which triangle these points lie in, our algorithm goes 
through the list of triangles and computes the values of S(i, j) which are defined by 
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a given triangle. More precisely, 
For/= L,..., Nt, do: 

a = n,(l), b = n2(1), C = n3(1) 

IL = (min(Xa, Xb, x)- XL)/DX 
JL = (min(ya, Yb' YJ -YL)/DY 

IH = (max(xa, Xb, x) -XL)/DX 
JH = (max(ya, Yb' YJ -YL)/DY 

For i = IL, IL + 1,. ..,IH, do: 
Forj = JL, JL + 1, . . .,JH, do: 

x = XL+ (i- 1)DX 

y= YL+ (j- 1)DY 
Solve x = bIXa + b2xb + b3Xc 

y-b2ya + b3Yb + b3Yc 
1 = bl + b2 + b3 

to obtain bI, b2, b3 
If bi > ?, i = 1, 2,3 then S(i, ) =Sabc(X, Y) 

FIGURE 2 
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In Figure 3a, we show the final interpolant based upon the curve network of 
Figure 2. For comparison, in Figure 3b we include the interpolant which uses the 
initial derivatives (Sx?, Sy?), i =,... , N. 

Our next example is comparable to one discussed by Lawson (cf. [7, Figure 7, p. 
175]). The values zi, i 1, . . , n, are obtained from the function 

EXP(-8[(x - .5)2 + (y _ .5)2]), 

The 26 data points and a contour plot of the interpolant are shown in Figure 4a. The 
contours are at the values S(x, y) = .2,.4,.6 and .8. A plot of the interpolant using 
the initial values for the derivatives is shown in Figure 4b. 

i 

1i i 

i 

i 

I 

i 

i 

I 

i 

FiGupE 3a 
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FIGURE 3b 

Our third example involves a nonconvex, multiply-connected domain and is 
included mainly to point out the possibility of using such domains with the present 
method. Further discussion on the problem of triangulating this type of domain and 
an algorithm can be found in [8]. In Figure 5a we show the triangulation and the 
final interpolant. The values zi, i = 1,. . . , N, are obtained from the same function as 
used in the previous example. Figure 5b contains a plot of the interpolant using the 
same data but over a triangulation of the convex hull. 

The last example is based upon data provided by the United States Geological 
Survey [6]. The ordinates represent elevations of a mostly subterranean formation of 
granite called Hawk Rock which is located in the southeastern desert of Arizona. We 
found this example particularly interesting because of the unique configuration of 
the data. Due to the techniques of collection, this data consists of subsets which lie 
on certain line segments. Figures 6a and 6b show these lines of data along with the 
triangulation of it. Two views of the interpolant are shown in Figures 6c and 6d. 
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AWK ROCK SEISMIC REFRACTION LOCATION MAP 
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FIGURE 6a 
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Recently, Franke [5] has reported on the results of a project devoted to the 
comparison of some 29 methods for interpolating scattered data. Included in this 
report are the results of our implementation of the present method which is based 
upon the max-min angle optimization of the triangulation of the convex hull, the 
algorithm of this section for computing the minimum norm network and the 
algorithm of this section for evaluating the interpolant on a rectangular grid. In 
addition to certain assessments of the fitting characteristics of each of the methods, 
Franke's report includes storage requirements and timing results. The storage 
requirements tabulated by Franke are given in terms of additional storage required 
beyond that needed for the data (xi, Yo, zi), i = 1,... ,N, and the output array of 
evaluations. For the implementation of the present method, this amounts to ap- 
proximately 32N. Franke's timing results are based on the use of an IBM 360/67. 
We have run all of our examples on a UNIVAC 1100/42. In Table 2 we give some 
approximations of the running time (in seconds) required for the three steps of our 
method. All programs mentioned have been written in FORTRAN. 

TABLE 2 

Minimum Evaluation 
Norm 40 X 40 80 X 80 

N Triangulation Network Grid Grid 

25 .10 .88 .35 1.16 
50 .35 2.14 .85 2.88 

100 1.24 4.18 1.64 5.56 
200 4.65 7.41 3.21 11.32 
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